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ABSTRACT The question of how specific contacts within a protein influence its stability and structure is examined
within a formal theoretical framework. A mathematical model is developed in which the potential energy of a protein is
taken as a harmonic expansion of all of its internal or normal coordinates. With classical statistical mechanics the
properties of the system can be derived from this potential energy function. A few new contacts are then introduced as

additional energy terms, each having a quadratic dependence on a single internal coordinate. These terms are added as

perturbations to the original potential energy, and the attendant changes in the properties of the system are obtained.
Exact expressions can be derived for changes in the enthalpy, entropy, and for any arbitrary internal degree of freedom.
These quantities are expressed in terms of the parameters of the potential energy functions of the new contacts, and the
mean square displacements and positional correlation functions of the internal coordinates. These results provide
qualitative insights into the role of contacts in stabilizing a particular conformation. Estimates are given for the entropy
of formation of a hydrogen bond in a protein. A criterion is proposed for determining whether a contact is essential to the
stability of a protein conformation. This model may be applicable to many experimental systems in which mutant or

modified proteins are available that differ by one or a few amino acids. The results may also be useful in thermodynamic
analyses of computer simulations.

INTRODUCTION

The molecular interactions that determine the stability of
protein conformations and complexes have absorbed the
attention of many investigators for many years. Among the
theoretical approaches to these questions are attempts to
formulate a detailed potential energy and to use a com-
puter to simulate the behavior of a protein (Nemethy and
Sheraga, 1977; Levitt, 1982; Karplus and McCammon,
1983). Other theoretical studies have avoided the level of
detail used in computer simulations in an attempt to gain
some qualitative insights. In one such study Sturtevant
(1977) considered many contributions to the heat capacity
and entropy changes of a protein, concluding that confor-
mational, solvation (or hydrophobic), and vibrational
effects are the most important determinants of protein
stability. Cooper and Dryden (1984) proposed a theory for
allostery involving ligand-induced changes in vibrational
modes. In recent years other theoretical studies (Karplus
and Kushick, 1981; Go et al., 1983; Levy et al., 1984) and
experimental studies (Hawkes et al., 1984) have arrived at
the conclusion that vibrational contributions to the stabil-
ity of protein conformations are of major importance.
A harmonic potential is a natural theoretical device with

which to treat vibrational contributions to the free energy,
and has recently been applied to proteins (Levy et al.,

1982; Go et al., 1983; Brooks and Karplus, 1983; Levitt et
al., 1985). The validity and usefulness of a harmonic
potential for proteins have been discussed extensively in the
above-cited studies and elsewhere (Bialek and Goldstein,
1985). Although there are limitations, the ease with which
a harmonic potential can be used to calculate thermody-
namic properties makes it a first order approximation of
considerable importance (Karplus and McCammon,
1983).
To gain a better understanding of the contribution of

vibrational free energy to the stability of proteins, a
theoretical model has been developed with the harmonic
potential as its basis. In this model a protein is treated as a
collection of atoms connected by perfect harmonic springs.
One or a few new springs are added as a perturbation to the
system. The entire system responds to this perturbation,
and the structural and thermodynamic consequences of
these additions are determined. Relations are then derived
that do not depend on a detailed knowledge of the form of
the potential energy function. Many of these results can be
used in conjunction with computer simulations to provide a
thermodynamic analysis, in the spirit of some previous
studies (Karplus and Kushick, 1981; Levy et al., 1984).
A motivation behind the development of this theory for

the perturbation of a harmonic system is the possibility of
applications to experiments on modified or mutant forms
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of proteins. Studies of denaturation (Matthews et al., 1980;
Hecht et al., 1984; Hawkes et al., 1984), structure (Grutter
et al., 1979), biological activity (Fersht et al., 1985; Craik
et al., 1985; Ackers and Smith, 1985), and subunit disso-
ciation (Ackers and Smith, 1985) of proteins with single or
multiple amino acid substitutions have identified some
important specific interactions. It is hoped that such
substitutions can be modeled as harmonic perturbations,
and that the theory presented here may be useful in the
interpretation of these kinds of experiments.

by the potential energy as expressed in Eqs. 1 or 2 . If we
take the classical limit (see Brooks and Karplus, 1983, and
Levy et al., 1984, for a discussion of the classical limit for
the vibrational energy of a protein), the partition function,
and hence the entropy and enthalpy, can be computed from
the classical configuration integral (MacQuarrie, 1976) to
give

S = -1/2nk - 1/2k InIrl =- 1/2nk - '/2 In AI (3)

and

THE MODEL

We begin by assuming that the potential energy of a
protein is locally quadratic in a set of internal coordinates.

n

V = VO + Exixjaij, (1)
,l J

where V is the potential energy, x is a set of internal
displacement coordinates,l and the temperature-indepen-
dent elements aij form a symmetric square matrix A. There
are N atoms and n = 3N - 6 internal degrees of freedom in
potential energy; the potential energy at the local mini-
mum is V0.

There are two strategies for including solvent effects
(McCammon, 1984). The model system can include a shell
of solvent molecules; the set of internal coordinates would
include their positions, and some elements of A would
represent solvent-protein and solvent-solvent interaction
energies. Alternatively, the potential energy function can
be regarded as a potential of mean force that includes
solvent effects. (The elements ofA would then be tempera-
ture dependent.) The theory developed here does not make
use of the explicit form of the potential energy of an entire
protein; it matters only that Eq. 1 can include solvent
effects in a formal sense. Because the development below
makes use of a temperature derivative of the partition
function, the preferred treatment of the solvent contribu-
tion to vibrational effects is the first procedure of including
a shell of solvent molecules in the system.

There is a unitary matrix that transforms this system to
normal displacement coordinates (Wilson et al., 1955;
Califano, 1976). Following this transformation, and
switching to matrix and vector notation, the harmonic
potential becomes

V= Vo +± 4PL', (2)

where A is a vector of normal displacement coordinates,
and r is a diagonal matrix of n positive eigenvalues denoted
as -yi.
The harmonic vibrational contributions to the thermo-

dynamic properties of a system are completely determined

'Throughout this paper displacement means that the coordinate is
referred to its position of minimum potential energy.

H= Vo + /2nkT, (4)

where k is the Boltzmann constant and T is the tempera-
ture. In this analysis the number of degrees of freedom, n,
does not change; terms with an explicit dependence on the
number of degrees of freedom, including the internal
kinetic energy, '/2nkT, will be neglected in subsequent
discussions.
The task is now to examine how this system will change

if it is modified in such a way that new internal contacts are
introduced. It is important to realize that the perturbations
introduced here involve only a change in the Hamiltonian
and not a change in the number of degrees of freedom. The
potential energy, u, of a new internal contact is expressed
as a single term with a quadratic dependence on one
particular internal coordinate, x,. Thus,

U = uo + a,xs (5)

where uO is the minimum potential energy for this contact,
and as is twice its force constant; both as and u0 are
independent of temperature. xs is the distance between two
interacting atoms minus the distance of minimum poten-
tial energy for that particular interaction. In a formal
sense, Eq. 5 represents an interaction between two atoms of
the structure that was not included in the original har-
monic potential in Eq. 1. Generalizing to an arbitrary
number of contacts gives

u = Z(Uo + asx) (6)

where the index s can now be varied to denote different
contacts.
The energies of real internal contacts depend on more

than one internal degree of freedom. Dependence on an
angle as well as a distance is typical. The most important
degree of freedom for hydrogen bonds and salt bridges is
the bond length. A dependence on angle, or on any other
internal degree of freedom, could be approximated by
additional terms in Eq. 6. For the sake of simplicity, in this
work a single contact will be represented by a single
quadratic term.
The addition of the new terms changes the normal

coordinates, the matrix F, and the position and the poten-
tial energy at the minimum. The objective now is to
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reevaluate the thermodynamic quantities with Eqs. 3 and
4, after the addition of the new terms represented by Eqs. 5
and 6, to the total potential energy in Eq. 2.
The first step in solving this problem is to express the xs

in terms of the original normal displacement coordinate 4'.
Since any internal coordinate can be expressed as a linear
combination of the normal coordinates, we have

xs = * gs- xso (7)

xso gives the position of the minimum potential energy for
contact s, relative to the minimum potential energy of the
unperturbed structure. The vector g5 could be a row of the
inverse of the matrix used to transform Eq. 1 to Eq. 2.
However, sets of internal coordinates are not unique (Wil-
son et al., 1955) and the internal coordinates used in Eqs. 5
or 6 need not appear in Eq. 1 for Eq. 7 to be valid.
Substituting Eq. 7 into Eq. 6 gives

u =4Gi6 - E [as(2xsOi * - XsO) US0] (8)
s

where the n x n matrix G is

E- asgS,
s

E asgs2gsl
G= s

E asgs gsI
s

Z asgs2gsl
s

E- sgs2
s

E asgsn 9s2
s

T. asgsngs I

T asgsngs2
s.

*- sagsn

(9)

The rank of this matrix is important to subsequent analysis
and is examined in Appendix A. The new potential energy
is obtained by adding Eq. 8 to Eq. 2 to give

V'= Vo + 1(r + G)4'

-E{2 aSxSgS -a5x2- u}. (10)

The position of the new potential energy minimum, 4", can
be determined by differentiating Eq. 10 with respect to 4'
and setting the derivative equal to 0. The resulting relation-
ship is

(F + G)O' = Easxsog. (11)

4' are computed explicitly in Appendix C with Cramer's
rule. However, for determining thermodynamic quantities
it is more useful to express 41' as

4" = (r + G) 'asx.og5. (12)

Eq. 10 can now be transformed to a new set of displace-
ment coordinates 4", referred to the new minimum at 4'.

The new coordinates are not normal coordinates. The
transformation gives

V'= Vo + #"tt(F + G)4" + E(a5x7o +us5)

-( asxsogs) (r + G)-( asxsogs). (13)

The dependence on position in Eq. 13 is quadratic, making
the computation of the classical configuration integral
identical to that for Eq. 1 or 2. By analogy with Eqs. 3 and
4 we see that the new entropy and enthalpy of the system,
after the incorporation of new internal contacts into its
structure, are

S'=-1/2klnlF + GI (14)
and

H' = VO (z asxsogs) (F + G) 1 (z asxsogs)

+Z(asx5+uso). ( 15)

From this point the problem is purely mathematical.
Appendix B shows how the determinant of the matrix in
Eq. 14 can be reduced to an expansion of the form

Jr + GI = IFI I1 + E aS Y,s +Lasa,|
s>r YS Yr

.Is Yrs Yts

+ : sara, Ys, Yrr Ytr + . .

s>rtt

Yst Yrt Yt

(16)

where the summation index s > r indicates that each pair is
only counted once, and where sums of the form li gsi gri/yi
are represented by the symbol Ysr. These sums reappear in
most of the analysis that follows, and are therefore very
important. It can be shown that

Xsx7 1/2 kTY,,, (17)

where the bar denotes an ensemble average. This is derived
by integrating the Boltzmann distribution with the poten-
tial taken from Eq. 2. x, and x, are expressed in terms of
normal coordinates as in Eq. 7, except that since xs and x,
are from the unperturbed system, xso = xO = 0. This
relation has been used in many other applications. Eq. 17 is
especially useful in the quasi-harmonic approximation
(Karplus and Kushick, 1981; Levy et al., 1984; Bialek and
Goldstein, 1985), and is a special case of more general
expressions (Maradudin, 1969; Califano, 1976).

Appendix D explains how the enthalpy can be expressed
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as

H' = Vo + EI (a,x.so + u,()

±

0 E aSxSOgSl E asXsOgs2 * * * E asXsOgsn
s s s

E aSsxogsl
s

E- asXsOgs2
s

E- asxsogs.
s

F + G

IF+ GI

where the subscripts s and r denote parameters for the two
different contacts. For three or more contacts, expressions
can also be written down. They are complicated, but they
are explicit functions of the same quantities that appear in
Eqs. 21. In general, the entropy depends only on aS, YSS, Ysr,
and analogous quantities for each new contact and pair of
contacts. The enthalpy depends on these same quantities
and, in addition, on the quantities xso, uso, as well as
analogous quantities for other contacts.

Explicit expressions for changes in any internal coordi-
nate can also be obtained. Another internal coordinate, x,
which is not involved in any new contact formation, can
still be expressed in terms of the normal displacement
coordinates with Eq. 7. The change in x, can be obtained by
substituting the position of the new potential energy mini-
mum (A/' from Appendix C) into an equation analogous to
Eq. 7 to give for a single contact

(18)

where the denominator in the last term can be taken from
Eq. 16 and the numerator can be expressed as an expansion
of the form (Appendix D)

rl'E L asarxso |

0 XrO xfo

+ E EI asaratx rsY,, Y,Yt, + - -

r>t s

Yts Y,, Ytt
*1~(19)

An important property of the matrix G is that its rank is
equal to the number of contacts, i.e., the number of terms
in Eq. 6 (Appendix A). The number of terms needed in the
above expansions is therefore limited by the number of
contacts. This point is made in Appendix B for the
expansion of F + G 1. Similar arguments apply to the other
expansions. This simplifies the results for one contact to

S' S - '/2kln(1 + a,Yss) (20a)

x-= asxsoYIs/(l + asYss) (22a)

For two contacts, denoted by the subscripts r and s, we
have
x,

Y, [arxrO+ asa. (XrO Y,r- XsO Ysr)] + Yjt [asxso + asar(Xso Yss- XrO Ysr)]
(1 +asYss)(1 +ar,Yr)- asar Ysr

(22b)

For three or more contacts the expressions are complex.
However, as with the thermodynamic quantities, they
depend on the same quantities, as, xs0, Yss, Ysr, and analo-
gous quantities for other contacts.
The change in xs, the coordinate participating in a new

contact, is easily obtained from Eqs. 22 by setting all
subscripts t equal to s. This gives

xS = asxso Yss/(1 + as YSS) (23a)

and

I arxroYrs + asxsoYss + asarxso(YrrYss - Ys2r)
Xs - {] l WIv1- Irvi n nU 2 (23bs

for one and two contacts, respectively.

H'= H + a5xso/(I + asYss) + Uso, (20b)

where S' and H' are the entropy and enthalpy of the
perturbed system. For two contacts, we have

S' = S -%k In [(1 + a,Y55) (1 + a,Y,,)- asa,Y2] (21a)

and

H'= H+U,+U,o

a5x4(1 + a,Y,,) + a,x o(1 + a,Y5s) - 2xsox,oasarYrs
- - 72I1 + a,Y5I) (1 + a,Y,,) - asa,Y,

APPLICATIONS

The results of the analysis presented here may be useful in
identifying and evaluating the harmonic contribution to
the vibrational free energy of a protein. A major factor
upon which the application of this theory to mutant or

modified proteins depends is how effectively can a change
in the potential energy surface of a modified or perturbed
protein be represented by quadratic terms of the form in
Eqs. 5 and 6. Hydrogen bonds or salt bridges should be well
represented by one, or possibly two terms. Steric repulsions
and hydrophobic interactions may require several terms.

BIOPHYSICAL JOURNAL VOLUME 51 1987

and

ki t as-rssJki t arIrr) asa,r1 sr

316



The ideal substitution is exemplified by interchanging a
serine and a cysteine (that does not form a disulfide bond).
In this case the energy change could be expressed in terms
of a single internal degree of freedom.

In real protein modifications there is often a change in
the number of atoms, and thus in the number of internal
degrees of freedom. The model developed here is applicable
to a system modified in such a way that the number of
degrees of freedom does not change. This problem could be
avoided by the use of residue or sidechain potentials
(Nemethy and Sheraga, 1977), or by the approximation of
the potential energies of two different sidechains in terms
of the positions of an equivalent number of extended
atoms.
The model and relationships developed here may be

applicable to some of the many experiments that can be
done on mutant or modified proteins. The quantities that
appear in these relationships are enthalpy, entropy, inter-
nal coordinates, the mean square displacements of internal
coordinates, and the parameters of the potential energy
functions of new internal contacts. The correlation func-
tions for the displacements of pairs of internal coordinates
also appear in this theory. These quantities cannot be
measured at present, but can be estimated from computer
simulations (Levitt et al., 1985).

Enthalpy and entropy differences between a folded and
denatured state can be measured (Matthews et al., 1980;
Hawkes et al., 1984; Hecht et al., 1984). The model
presented here cannot be applied to the denatured state of
a protein. Application of this theory to denaturation exper-
iments may be possible if the effect of modification on the
entropy and enthalpy of the denatured state can be
estimated from solvation energies (Nozaki and Tanford,
1971; Eisenberg and McLachlan, 1986).
The parameters for the internal contact energy functions

that appear in Eqs. 5 or 6 can be taken from potentials used
in computer studies (Nemethy and Sheraga, 1977;
McCammon et al., 1979; Levitt, 1982; Karplus and
McCammon, 1983). Changes in an internal coordinate can
be taken from x-ray crystallography. Spectroscopic tech-
niques, especially NMR (Wuthrich, 1982), can also be
used to provide this information. Mean square deviations in
position can be estimated from Debye-Waller factors
(Debrunner and Frauenfelder, 1982; Petsko and Ringe,
1984), although mean square deviations in the positions of
atoms are not simply related to the mean square displace-
ment of the internal coordinate that appears in Y,. Spec-
troscopic techniques may also be useful in providing mean
square displacements (Debrunner and Frauenfelder, 1982;
McCammon, 1984).
As an illustration of a simple qualitative application we

can ask what range of entropy changes might be expected
for the formation of a typical hydrogen bond in a protein. It
is assumed that the hydrogen bond is buried within the
protein so that the groups involved cannot form hydrogen

bonds with water. Eq. 20a can be used if the force constant
for a hydrogen bond is available, and if the mean square
displacement of the distance between the two interacting
atoms is known in the absence of the hydrogen bond. The
"10-12 potential" is often used to represent the potential
energy as a function of length for a hydrogen bond
(Nemethy and Sheraga, 1977; McCammon et al., 1979;
Levitt, 1982; Karplus and McCammon, 1983). For a
potential of this form the force constant a -60 Emin/
rmin. Values used previously for Em,,n and rmin are 3.5
kcal/mol and 2.8 A, respectively (McCammon et al.,
1979). This gives a = 27 kcal/A' mol. Mean square
displacements of atomic positions in a protein interior
range from 0.05 to 0.15 A2 (Debrunner and Frauenfelder,
1982), with larger fluctuations occurring near the protein
surface or near a terminus. It will be assumed that the
positions of the two oxygen atoms involved in the hydrogen
bond are uncorrelated in the absence of the hydrogen bond.
This leads to an increase by a factor of . Using these
numbers gives a range of from -2.4 to -3.5 entropy units
for the formation of a hydrogen bond at 3000K. The
entropy change would be substantially smaller if the
relative positions of the two oxygen atoms were already
constrained by contacts between nearby groups.
An interesting insight into protein stability can be

gained by taking a slight twist to the model as formulated
and asking what is the consequence of removing a contact
from a structure, i.e., instead of adding a spring to the
structure, a spring is removed. This amounts to subtracting
terms of the form in Eqs. 5 and 6 from the original
total potential instead of adding them. The resulting
entropy change for breaking a single contact is then
- 1/2k ln(1- a Y). Since Y is always positive, the entropy
change is always positive, but there is a divergence at aY =
1. When aY is > 1, the matrix that results from subtracting
G from F has one or more negative eigenvalues. Within the
context of this model, this divergence means that without
the contact, there is no longer a local potential energy
minimum near the original configuration. By removal of
the local minimum the harmonic potential might be invali-
dated. It is possible that the system could then undergo a
change to a new conformation.

Without knowing the fate of the system once the mini-
mum is removed, consideration of this divergence offers a
means of evaluating the essentiality of an intramolecular
contact to the structure of a macromolecule. By comparing
the mean square displacement of the distance between the
two interacting atoms with kT/2a, the importance of a
contact to the conformation of a protein can be assessed.
By this criterion, at 3000K a hydrogen bond with a force
constant a of 27 kcal/A2 mol is judged to be essential if the
mean square displacement in bond length is >0.012 A2.
Unfortunately, measurements of mean square bond length
displacements of this magnitude are not experimentally
possible. The criterion proposed here for the essentiality of
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an internal contact could be applied to proteins with
computer simulation techniques.

DISCUSSION

Even without detailed knowledge of the quantities that
appear in Eqs. 20 and 21, some useful qualitative general-
izations can be made. Because Yss is always positive, Eq.
20a indicates that the entropy is always reduced after the
introduction of a new contact. This is in keeping with the
general result that introducing a new constraint into a
harmonic system always increases vibrational frequencies
(Wilson et al., 1955).

It is instructive to ask what are the limits to the
magnitude of the entropy decrease after the formation of a
single contact. The sum E2igj2 is equal to one (the matrix for
the transformation from A to r is unitary), so an upper
bound to YS, is the reciprocal of the smallest element of r,
which will be denoted as t. Thus, according to Eq. 20a the
entropy can decrease by as much as -'/2k ln (1 + a/v).
The situation represented by this extreme is one where the
internal degree of freedom of the new contact overlaps with
a very weakly constrained internal mode of the protein: the
force constant of the new contact then simply adds to the
force constant of that weak normal mode. The largest
changes in entropy would then occur when the newly
formed contact constrains the softest internal mode of the
protein. If the force constant of the new contact, a, is 1,000
times larger than the force constant of the soft mode that is
constrained by the new contact, the entropy change will be
- 6.9 entropy units, and the free energy increase at 300°K
will be 2 kcal/mol. If the modes with which the contact
interacts are of similar strength, one might expect aY,. to
be of the order of 1. In this case the free energy increase
would be -0.2 kcal/mol.

Single amino acid replacements change the entropy of
denaturation of some mutant forms of lysozyme by as
much as 30 entropy units (Hawkes et al., 1984). This is
much larger than can be accounted for by solvation
differences between the single amino acid replacements
(Nozaki and Tanford, 1971; Eisenberg and McLachlan,
1986). Representing the changes produced by such modifi-
cations within the theoretical framework developed here
would require several terms in Eq. 6. Otherwise, values of a
single force constant or a prior mean square displacement
would have to be unrealistically high. It is therefore likely
that the single amino acid replacements that produce such
large entropy changes involve perturbations of several
internal degrees of freedom.
A consequence of Eq. 20b is that the enthalpy change

after the addition of a single new contact is bounded below
by u,0 and above by u,0 + asxso). (It should be noted that xso
is the position of the energy minimum of the new contact
relative to the unperturbed structure. The actual value of
xs' in the new structure is between 0 and xso.) The lower

bound of the enthalpy is realized when the new contact fits
into the original structure perfectly, so that x,' = 0. The
upper bound is realized if the protein retains its original
structure, and the only strain appears in the new contact, so
that xs' = xso. Examination of Eqs. 20a and 20b shows that
the actual value of the enthalpy within these bounds is
completely determined by x5 and the entropy change.

It can be shown that all of the terms of the expansion of
F + G in Eq. 16 are always positive (Hardy et al., 1952),
and therefore have a lower bound of zero. This means that
the upper bound to a change in entropy after the addition
of several new contacts is -l/2k In (1 + Is asYss). A lower
bound to the entropy change after the addition of several
contacts is derived by replacing the terms of the expansion
in Eq. 16 by their upper bounds. The upper bound of the
determinant of a matrix of the form that appears in this
expansion is the product of the diagonal elements (Hardy
et al., 1952). After this replacement, Ir + G 1/1 r can be
factored into lIs (1 + asYss). Thus, the lower bound to the
change in entropy is the sum of all the changes after the
addition of each contact separately.
The limits for the entropy changes can be summarized

as follows. The maximal decrease in entropy is realized
when there is no overlap between the various degrees of
freedom affected by the various new contacts. The minimal
decrease in entropy occurs when there is complete redun-
dancy. Thus, entropic destabilization of a structure is best
achieved by distributing new contacts over as many normal
modes as possible.
The degree of overlap between different internal degrees

of freedom is reflected in the magnitude of Ysr. When Ys, is
zero, Eqs. 21 can be used to show that the changes in
entropy and enthalpy produced by incorporating two new
contacts decompose into the sum of the changes resulting
from incorporating each individual contact. Ackers and
Smith (1985) reviewed studies in which proteins with
single and double modifications are compared. The major-
ity of the cases considered show additive effects of two
modifications. In a few instances double modifications
were not additive, suggesting that there is some overlap
between the degrees of freedom perturbed by the two
modifications. To the extent that a single modification can
be represented by the addition of one quadratic term, the
results of such experiments could be used to estimate
positional correlations. Future efforts will be directed
towards improving the theory for cases where each modifi-
cation is represented by several quadratic terms (Jackson,
M. B., manuscript submitted for publication).

It is notable that only pairwise positional correlation
functions (Eq. 17) contribute to the above expressions, and
not higher order correlation functions. This follows from
the assumption of a quadratic form for the potential energy
in Eqs. 1, 2, and 6. An important consequence of this is that
if one has a set of contacts to examine, once all single and
pairwise experiments have been carried out, results for any

BIOPHYSICAL JOURNAL VOLUME 51 1987318



higher order combination of the same perturbations can be
predicted. The single and pairwise terms completely define
the system.

APPENDIX A

Rank of the Matrix G in Eq. 9
If only a single contact is included, then any 2 x 2 submatrix ofG will be
of the form

2 a(asgsi asgsigsj

aIgSjgSi asgs2/
\asgsjg5i a.g5s

(Al)

Factoring out gs from the first column and g5j from the second column
leaves a matrix with two identical columns, hence its determinant is zero.
Thus, with only a single contact, the rank of G is one.

For an arbitrary number of contacts, j, we can represent a k x k
submatrix of G by its columns

G a(sa5gs51g E aS2gs22gs2.9* *, aE kglkkglkI (A2)
Si S2 Sk

where si is an index that is varied over all terms of Eq. 6. It is undestood
that each column, g, has been truncated to k elements. The determinant
can then be written as the multiple sum

i- T YZ |. . as1gsjgs51g as2gS22gS2.. . . a Sg5kkgSk | (A)
Si S2 S3 Sk

If k, the dimension of the submatrix, is greater than j, the number of
contacts, then every term in Eq. A3 will be zero because in at least two
columns, the value of si will be the same and the columns will be linearly
dependent. Only when each column is derived from a different contact
will all the si be different, producing a nonzero term. Thus, the highest
order nonsingular submatrix ofG is of order j.

APPENDIX B

Determinant of F + G
The determinant of a matrix that is the sum of a diagonal matrix and a
nondiagonal matrix can be expanded as (Aitken, 1956)

Gii G,1

Jr + GI= IFI 1+ Gii + E Gji Gjj
i 'Yi i>j'>iYj

Gii Gij Gik

+
Gii GiU Gjk

+

i>j>k Gki Gkj Gkk

'YiYjYk

* * *|. I(B1)

where G,Y - Es a5g3, gj. Note that each term in the expansion has
successively higher order submatrices of G. Appendix A shows how the
submatrices of G of order greater than the number of contacts have
determinants of 0. Thus the number of terms needed in the expansion is
limited by the number of contacts in the perturbation.
The first order term in Eq. B 1 is simply 2 , a,Y55. The second order term

is

2asgs5 argrigrj
Z Z asgsigsj argr, I

rs i>j
Yizj

(B2)

where s and r are two independently varied indices that denote the
contact. Factoring out a5g5i from column one and argrj from column two,
and multiplying row one by gsi/yi and row two by gj/lyj gives

TS glsilyi VEgsigrilYiIYsYaasa E asa Y (B3)
s>r EZgrjgsi/yj -g2rl/y s>r Yr yrr

i i

Similar manipulations allow the third order term to be expressed as

Yss Yrs YIs

57 asa,a, Ysr Y,r Y,r . (B4)
s>r>t

Yst Y,, Y,,

The general form of the expansion is evident. Eqs. B3 and B4 can also be
obtained by a more complex derivation that makes use of the Cauchy-
Binet theorem (Aitken, 1956).

APPENDIX C

Position of the New Potential Energy
Minimum

Applying Cramer's rule to Eq. 11 gives

06 =

,y+G,, G21

Gill y2+G22 ...Z* asxsOg2s ... Gn2
s

G,i G2. ... E asx,ogis
s

... Gw

Gln G2n .* . . asxsogin ...* * Gnn
s

IF+Gl

(Cl)
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s
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Applying the expansion of the determinant of a sum of a diagonal and a
nondiagonal matrix (Aitken, 1956) gives

Fr Gl E xg1asxsOg5y+s
IF +GI sGij Z asxsogjs

Gjj Gkj i asx,ogjs

Gjk Gkk Z asxsOgks (C2)
j>k

Gji Gki asOgis
s

1Yi'Yj'Yk

Factoring out by columns, multiplying the appropriate rows by the
appropriate factors, and resumming in a fashion similar to that used in
Appendix B, we have

assarxso gsi gi

r s 1&iYsr Yss

gsi gri gti

andEE 'a'a&xsYsr Yrr Ytr (C3)
r>t s 7,i

Yst Yrt Ytt

as the second and third terms, respectively.
To determine a specific internal coordinate, xq, Eq. 7 is used. The first

term is simply

Z asYsq. (C4)
s

The second and third terms are

Ysq Yrq
Z E asa,xSo
r s Ysr YSS

Ysq Yrq Ytq

and asaratxso Ysr Y,, Ytr (C5)
r>t s

Yst Yrt Yt

and the general form of the expansion is evident.

APPENDIX D

Calculation of the Enthalpy
It will first be shown that the second term on the right of Eq. 15 and the
third term on the right of Eq. 18 are identical. Partitioning the numerator
of the third term of Eq. 18 as

O x I x

x r+GI - -IJ GI.x ,--C x F+GC,

Then using

1 -x(r+G)-' 1 x 1 0

O I x r+G -(rF+G)-Yx I

1 - x(r + G)-'x 0

0 r+±G

gives

o xl 1- x(r+G)-'x 0 -Ir+cI
x r+G 0 r+G

Ir+GI JIr+GI
= -x(r + G)-'x.

This can also be seen by using the Cauchy expansion (Aitken, 1956) of
the determinant in the numerator of the last term in Eq. 18.
A diagonal expansion of the numerator of Eq. 18 gives

° EgY asX.si
Es

i Easxsogsi Gii

O

+ ~~~~~a s

E E asXsogs (DI)
E asxsogsj Gij Gjj

Manipulations similar to those used in Appendices B and C reduce this
expression to

0 XrO
Zasarxso

sr Ysr Y

0 XrO x1o

+ sE ara,a,xso Yrs Y,r Y, . (D2)
r>t s

Yst Y,r Ytt
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